Measurement of event-by-event v_n in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV with the ATLAS detector

Soumya Mohapatra
Stony Brook University
for the ATLAS Collaboration

- Event by event measurement of v_n distributions: ATLAS-CONF-2012-114
- ATLAS event-Plane Correlation Note: ATLAS-CONF-2012-049

Hot Quarks 2012
14-21 October 2012
Flow harmonics

\[
\frac{dN}{d\phi} \propto 1 + \sum_n 2v_n \cos n(\phi - \Phi_n)
\]
The importance of fluctuations

Two-particle cumulant $\sim \sqrt{(\langle v_2 \rangle^2 + \sigma^2)}$

EP Method in between $\langle v_2 \rangle$ and $\sqrt{(\langle v_2 \rangle^2 + \sigma^2)}$

Four-particle cumulant $\sim \sqrt{(\langle v_2 \rangle^2 - \sigma^2)}$

Measuring the full distribution of EbE v_n distribution completely supercedes these measurements.

Not only do we get the $\langle v_n \rangle$ and σ but also the full shape of the distribution.

Large amount of information regarding the initial geometry and hydrodynamic expansion.
Event by Event flow measurements

The large acceptance of the ATLAS detector and large multiplicity at LHC makes EbE v_n measurements possible for the first time.
Azimuthal distribution in single event

- Ideal detector:

\[
\frac{dN}{d\phi} \propto 1 + \sum_{n=1} v_n \cos(n\phi - n\Psi_n) = 1 + \sum_{n=1} \left(v_{n,x} \cos(n\phi) + v_{n,y} \sin(n\phi) \right)
\]

\[
v_{n,x} = \langle \cos(n\phi) \rangle, \quad v_{n,y} = \langle \sin(n\phi) \rangle
\]

\[
v_n = \sqrt{v_{n,x}^2 + v_{n,y}^2}
\]
Azimuthal distribution in single event

- Ideal detector:

\[
\frac{dN}{d\phi} \propto 1 + \sum_{n=1}^{\infty} v_n \cos(n\phi - n\Psi) = 1 + \sum_{n=1}^{\infty} \left(v_{n,x} \cos(n\phi) + v_{n,y} \sin(n\phi) \right)
\]

\[
v_{n,x} = \langle \cos(n\phi) \rangle, \quad v_{n,y} = \langle \sin(n\phi) \rangle
\]

\[
v_n = \sqrt{v_{n,x}^2 + v_{n,y}^2}
\]

- Correct for acceptance:

\[
v_{n,x} \rightarrow v_{n,x} - v_{n,x}^{\text{det}}
\]

\[
v_{n,y} \rightarrow v_{n,y} - v_{n,y}^{\text{det}}
\]
Azimuthal distribution in single event

- **Ideal detector:**

\[
\frac{dN}{d\phi} \propto 1 + \sum_{n=1} v_n \cos(n\phi - n\Psi_n) = 1 + \sum_{n=1} \left(v_{n,x} \cos(n\phi) + v_{n,y} \sin(n\phi) \right)
\]

\[
v_{n,x} = \langle \cos(n\phi) \rangle, \quad v_{n,y} = \langle \sin(n\phi) \rangle
\]

\[
v_n = \sqrt{v_{n,x}^2 + v_{n,y}^2}
\]

- **Correct for acceptance:**

\[
v_{n,x} \rightarrow v_{n,x} - v_{n,x}^{\text{det}}
\]

\[
v_{n,y} \rightarrow v_{n,y} - v_{n,y}^{\text{det}}
\]

- **Correct for efficiency by weighting tracks by**

\[
\frac{1}{\varepsilon(\eta, p_T)}
\]
Flow vector distribution & smearing

2D flow vector distribution

\[v_{n,x} = \langle \cos(n\phi) \rangle, \quad v_{n,y} = \langle \sin(n\phi) \rangle \]
The v_2^{obs} will differ from the true v_2 due to finite multiplicity in the events.
The measured v_n vector will fluctuate about the true vector due to finite number of tracks.

The fluctuation will be a 2D Gaussian.

Response function will be known if the width of the Gaussian fluctuation can be determined.
Divide the event into two sub-events with roughly equal number of tracks.

The fluctuation in each sub-event will be \(\sqrt{2} \) times larger than the full event.

If we take difference between the flow vectors for the two sub-events, the signal will cancel and we will get the size of the fluctuation.
Determining response function

- Estimated by the correlation between "symmetric" subevents

- 2D response function is a 2D Gaussian!

\[p(\vec{v}_n^{\text{obs}} | \vec{v}_n) \propto e^{-\frac{|\vec{v}_n^{\text{obs}} - \vec{v}_n|^2}{2\delta^2}} \]

\[\delta = \begin{cases}
\frac{\delta_{2SE}}{\sqrt{2}} & \text{for half ID} \\
\delta_{2SE} / 2 & \text{for full ID}
\end{cases} \]

- Response function obtained by integrating out azimuth angle

\[p(\nu_n^{\text{obs}} | \nu_n) \propto \nu_n^{\text{obs}} e^{-\frac{\nu_n^{\text{obs}} v_n}{2\delta^2}} I_0 \left(\frac{\nu_n^{\text{obs}} v_n}{\delta^2} \right) \]

- Use Bayesian unfolding to correct measured \(v_n \) distributions
Basic unfolding performance: v_2, 20-25%

v_2 converges within a few % for $N_{\text{iter}}=8$

small improvements for larger N_{iter}.
Despite different initial distribution, all converge for $N_{\text{iter}} = 64$

Wide prior converges from above, narrow prior converges from below.
Main physics result: probability distributions of v_n

for gaussian distributions: $p(v_n) = \frac{v_n}{\sigma} e^{-v_n^2/2\sigma^2}$, $\sigma = \sqrt{\frac{2}{\pi} \langle v_n \rangle}$
Unfolding in different p_T ranges: 20-25%

Distributions for higher p_T bin is broader, but they all have ~same reduced shape

Hydrodynamic response ~ independent of p_T.
Comparison to Event-plane v_n values

for gaussian fluctuations: $\sigma_n / \langle v_n \rangle \approx 0.523$
Comparison to Event-plane v_n values

for gaussian fluctuations: $\sigma_n / \langle v_n \rangle \approx 0.523$
Comparison to Event-plane v_n values

for gaussian fluctuations: $\sigma_n / \langle v_n \rangle \approx 0.523$
Comparison to Event-plane v_n values

For gaussian fluctuations: $\sigma_n / \langle v_n \rangle \approx 0.523$
Comparison to Event-plane v_n values
Measuring the hydrodynamic response: v_2^2

$$v_n \propto \epsilon_n = \frac{\sqrt{\langle r^n \cos n\phi \rangle^2 + \langle r^n \sin n\phi \rangle^2}}{\langle r^n \rangle}$$

For Glauber and CGC mckln

Both models fail describing $p(v_2)$ across the full centrality range
Two-plane correlations

Also see Li Yan’s talk in this session
Three-plane correlations

Also see Li Yan’s talk in this session
Summary

- Measured event-by-event probability distribution of v_2-v_4 in various centrality bins.
- The v_2 distribution is radial projection of 2D Gaussian in most central events.
 - But significant deviation is seen for >5%
- For v_3, v_4 the distributions are consistent with 2D Gaussian for all centralities
- The reduced shape of v_n distributions has no p_T dependence ➔ hydro response independent of p_T
- $p(v_2)$ is inconsistent with $p(\varepsilon_2)$ from Glauber &MC-KLN model.
- Also measured a large set of two and three-plane correlations
- Both measurements are the first of their kind.
 - Provide direct constraints on the hydrodynamic response to initial geometry fluctuations.
- Tracking coverage: $|\eta|<2.5$
- FCal coverage: $3.2<|\eta|<4.9$ (used to determine Event Planes)
- For reaction plane correlations use entire EM calorimeters (-4.9 < η < 4.9)
Basic unfolding performance: v_2, 20-25%

v_2 converges within a few % for $N_{\text{iter}} = 8$
small improvements for larger N_{iter}.
Measuring the hydrodynamic response: v_3
Measuring the hydrodynamic response: v_4^{30}
EbE distributions

Run 169927
Event 400484
Pb-Pb $\sqrt{s_{NN}}=2.76$ TeV
$\phi > 0.5$ GeV

Run 169927
Event 153906
Pb-Pb $\sqrt{s_{NN}}=2.76$ TeV
$\phi > 0.5$ GeV

Run 169927
Event 153938
Pb-Pb $\sqrt{s_{NN}}=2.76$ TeV
$\phi > 0.5$ GeV

Run 169927
Event 400484
Pb-Pb $\sqrt{s_{NN}}=2.76$ TeV
$\phi > 0.5$ GeV

Run 169927
Event 153906
Pb-Pb $\sqrt{s_{NN}}=2.76$ TeV
$\phi > 0.5$ GeV

Run 169927
Event 153938
Pb-Pb $\sqrt{s_{NN}}=2.76$ TeV
$\phi > 0.5$ GeV
EbE distributions
Unfolding for Half ID

\[V_2 \, 20-25\% \]

\[V_3 \, 20-25\% \]

\[V_4 \, 20-25\% \]

Events

Unfolded Half-ID

Full-ID Input

Half-ID Input

Full-ID Unfolded

Half-ID Unfolded

\[N_{\text{int}}=128 \]

\[p_T>0.5 \text{ GeV} \]

\[l=0 \text{ as prior} \]
Unfolding implemented using RooUnfold package

- True ("cause" c or v_n) vs measured distribution ("effect" e or v_{n}^{obs})

Denote response function

$$A_{ji} = p(e_j|c_i)$$

- Unfolding matrix M is determined via iterative procedure

$$\hat{c}_{\text{iter}+1} = \hat{M}_{\text{iter}} e, \quad \hat{M}_{ij}^{\text{iter}} = \frac{A_{ji}\hat{c}_{\text{iter}}}{\sum_{m,k} A_{mi}A_{jk}\hat{c}_{\text{iter}}^k}$$

- Prior, c^0, can be chosen as input v_{n}^{obs} distribution or it can be chosen to be closer to the truth by a simple rescaling according to the EP v_n
Measuring the two-plane correlations

- Ψ_n is measured here
- Ψ_m is measured here
- Gap

-4.9 < η < -0.5
-0.5 < η < 0.5
0.5 < η < 4.9

- Correlations are measured using EM+Forward calorimeters (-4.9 < η < -4.9)
- If Ψ_n is measured in negative half (-4.9 < η < -0.5), then Ψ_m is measured in positive half of calorimeters (and vice versa).
 - Thus same particles are not used in measuring both Ψ_n and Ψ_m.
 - Removes auto-correlation
- There is a $\Delta \eta$ gap of 1 units between the two halves to remove any non-flow correlations
Measuring the three-plane correlations

\[\Psi_k \]

- 4.8 < \eta < -3.3
- -2.7 < \eta < -0.5
- 0.5 < \eta < 2.7
- 3.3 < \eta < 4.8

- \(\Psi_n \), \(\Psi_m \), and \(\Psi_k \) are measured in different parts of the calorimeter.
 - Thus same particles are not used in measuring any of the \(\Psi \)'s.
 - Thus there is no auto-correlation
- There is a \(\Delta \eta \) gap between any two of the detectors
- Event mixing is used to remove detector effects