Soft probes of p+Pb and Pb+Pb collisions in the ATLAS experiment at the LHC

Sooraj Radhakrishnan
for the ATLAS Collaboration
Soft probes in p+Pb and Pb+Pb collisions

- Collective flow in Pb+Pb:
 - Flow fluctuations, flow correlations, event-by-event measurements..
 - More tools to constrain initial conditions and medium response (viscosity, equation of state, ..)

- ‘Flow’/Ridge in p+Pb:
 - Long range correlations in p+Pb: Flow in small systems?.
 - Measurement of Fourier harmonics associated with ridge to high p_T (~ 10 GeV)
 - First and higher order harmonics
 - Comparison of flow harmonics in p+Pb and Pb+Pb. Common origin?
Flow, correlations and fluctuations in Pb+Pb
Flow harmonics from multi-particle cumulants

If flow fluctuations are Gaussian,
\[p(\vec{v}_n) = \frac{1}{2\pi\delta v_n^2} e^{-\left(\frac{(\vec{v}_n - \vec{v}_n^{RP})^2}{2\delta v_n^2}\right)} \]

\[v_n\{4\} = v_n\{6\} = v_n\{8\} = v_n^{RP} \]

Also non-flow contributions are suppressed in \(v_n \) from higher order cumulants

arXiv:1408.4342
Flow harmonics from multi-particle cumulants

If flow fluctuations are Gaussian, \(p(\vec{v}_n) = \frac{1}{2\pi\delta v_n^2} e^{-\frac{(v_n - \vec{v}_n^{RP})^2}{2\delta v_n^2}} \)

\(v_n\{4\} = v_n\{6\} = v_n\{8\} = v_n^{RP} \)

Also non-flow contributions are suppressed in \(v_n \) from higher order cumulants

arXiv:1408.4342

Ratio of higher order cumulants close to 1
Event by event flow and flow fluctuations

- $\nu_n\{2k\}$ can also be calculated from $P(\nu_n)$ from EbE flow measurements

$ATLAS$ Pb+Pb

| Centrality | $\sqrt{s_{NN}}$ | L_{int} | $p_T > 0.5$ GeV, $|\eta| < 2.5$ |
|------------|-----------------|-----------|---------------------------------|
| 2-3% | 2.76 TeV | 7 μb$^{-1}$ | |
| 5-10% | | | |
| 20-25% | | | |
| 30-35% | | | |
| 40-45% | | | |
| 60-65% | | | |

$JHEP11(2013)183$
Comparison of EbyE and cumulant results

- $\nu_n\{2k\}$ can also be calculated from $P(\nu_n)$ from EbyE flow measurements

- Good consistency between the two set of measurements.

arXiv:1408.4342
Flow correlations – Event shape selection

- Can measure correlations between ν_n by selecting on event-shape

- For each centrality select on ν_2 in the FCal ($3.2 < |\eta| < 4.9$)
Flow correlations – Event shape selection

- Can measure correlations between v_n by selecting on event-shape
 - For each centrality select on $|\vec{Q}|$ in the FCal ($3.2 < |\eta| < 4.9$)
 - Control on event-shape: v_2 in ID ($|\eta| < 2.5$) varies by ~ a factor of 3.

- Measure v_n in ID ($|\eta| < 2.5$) for each class using 2PC.
- Study correlations between v_n -> insensitive to selection bias from statistical smearing

ATLAS-CONF-2014-022
Linear and non-linear contributions, ν_4

- Non-linear response: $\nu_4 e^{i4\varphi_4} = c_0 e^{i4\varphi_4^*} + c_1 (\nu_2 e^{i2\varphi_2})^2$

- Fit with $\nu_4 = \sqrt{c_0^2 + (c_1 \nu_2^2)^2}$ to separate linear(ε_4) and non-linear (ν_2^2) components.
Non-linear response:

\[v_4 e^{i4\varphi_4} = c_0 e^{i4\varphi_4^*} + c_1 (v_2 e^{i2\varphi_2})^2 \]

Fit with

\[v_4 = \sqrt{c_0^2 + (c_1 v_2^2)^2} \]

to separate linear (\(\varepsilon_4\)) and non-linear (\(v_2^2\)) components.

Linear component dominates in central classes, non-linear in peripheral.
Ridge in p+Pb

More results and details in arXiv:1409.1792
Long-range correlations (‘ridge’) observed in high multiplicity p+Pb collisions.

Ridge present on both near and away sides.

Arising from final state interactions or initial state correlations?
$Y(\Delta \phi, \Delta \eta) = Y_{\text{Ridge}}(\Delta \phi) + Y_A(\Delta \phi, \Delta \eta) + Y_N(\Delta \phi, \Delta \eta)$

- Signal of interest
- Away-side recoil
- Near-side jet peak

- Jet peak & recoil in central collisions are estimated from the peripheral collisions and subtracted.
2PC Analysis – recoil subtraction

\[Y_{\text{corr}}(\Delta \phi, \Delta \eta) = \frac{\int B(\Delta \phi, \Delta \eta) d\Delta \phi d\Delta \eta}{\pi \eta_\Delta^{\text{max}}} \left(\frac{S(\Delta \phi, \Delta \eta)}{B(\Delta \phi, \Delta \eta)} - b_{\text{ZYAM}} \right) \]

per-trigger yield in 2D

\[b_{\text{ZYAM}} \]

combinatorial background

\[Y_{\text{sub}}(\Delta \phi, \Delta \eta) = Y(\Delta \phi, \Delta \eta) - \alpha Y_{\text{peri}}^{\text{corr}}(\Delta \phi, \Delta \eta) \]

\[\alpha \] is chosen such that

\[\alpha Y_{\text{peri}}^{\text{corr}} \]

\[Y_{N-\text{peak}} \]

\[Y_{N-\text{Peak}} = \int_{|\Delta \eta|<1} Y(\Delta \eta) d\Delta \eta - \frac{1}{3} \int_{2<|\Delta \eta|<5} Y(\Delta \eta) d\Delta \eta \]
2PC Analysis – recoil subtraction

\[Y_{\text{sub}}(\Delta \phi, \Delta \eta) = Y(\Delta \phi, \Delta \eta) - \alpha Y_{\text{peri}}^{\text{corr}}(\Delta \phi, \Delta \eta) \]

Before subtraction

After subtraction

ATLAS Preliminary
\[\sqrt{s_{NN}} = 5.02 \text{ TeV}, \ L_{\text{int}} = 31 \text{ nb}^{-1} \]
\[1 < p_T^{a,b} < 3 \text{ GeV} \]
- 2nd 3rd and 4th order harmonics cancel in the difference.
 - Yield from recoil matches the yield difference for $1 < \pt^b < 3 \text{ GeV}$
 - Holds irrespective of \pt^a

- At other \pt^b, differences are seen
 - consistent with a long range ν_1.

$Y_{int} = \int_a^b Y^{corr}(\Delta\phi) \, d\Delta\phi$
Near-side ridge visible through the entire p_T range studied.

Origin of high- p_T ridge?
- Non-zero v_2, v_3 at high p_T (~10 GeV).
- v_n decrease with increasing n.
- Rise with p_T at low p_T and then decrease.
- Factorizes within a few percent for $p_T^b < 4$ GeV.

$$Y^\text{sub}(\Delta \phi) \sim 1 + \sum_n 2v_n, n \cos(n\Delta \phi)$$

$$v_n(p_T^a) = \frac{v_{n,n}(p_T^a,p_T^b)}{\sqrt{v_{n,n}(p_T^b,p_T^b)}}$$
Fourier harmonics

- Non-zero v_2, v_3 at high p_T (~10 GeV).
- v_n decrease with increasing n.
- Rise with p_T at low p_T and then decrease.

- Less variation in integrated v_2 for $N_{ch}^{\text{rec}} > 150$, v_3 continues to increase.
After recoil subtraction, $p_T^{a,b}$ dependence of v_{11} similar to that seen in Pb+Pb collisions

- In Pb+Pb, attributed to long-range v_1 from density fluctuations which is $-$ve at low p_T and $+$ve at higher p_T.

$\nu_{1,1}$ - First order harmonic in $p+Pb$
Employ similar factorization as other harmonics, but account for sign change

\(v_{1,1} \) can be factorized as

\[
v_1(p_T) \equiv \frac{v_{1,1}(p_T, p_T^{\text{ref}})}{v_1(p_T^{\text{ref}})}
\]

\[
v_1(p_T^{\text{ref}}) = \text{sign}(p_T - p_T^0) \sqrt{|v_{1,1}(p_T^{\text{ref}}, p_T^{\text{ref}})|}
\]

\[
p_T^0 = 1.5 \text{ GeV}
\]

Good agreement for different \(p_T^{\text{ref}} \), suggesting a single particle modulation.
Peripheral Pb+Pb collisions have comparable multiplicity as ultra central p+Pb collisions.

Larger jet contribution in p+Pb than Pb+Pb in events with similar multiplicity.
Comparison of ν_n in p+Pb and peripheral Pb+Pb.

- Significantly larger ν_2 and ν_4 in Pb+Pb, but comparable magnitudes for ν_3
 - Large elliptic geometry from overlap in PbPb
 - ν_4 gets contribution from ν_2

- Compare $\nu_n (p_T)_{p+Pb}$ with $\nu_n (p_T/K)_{Pb+Pb}$, (Teaney et.al)
 - $K=1.25$, ratio of $<p_T>$.

- p+Pb: $<N_{ch}> \pm \sigma = 259 \pm 13$
- Pb+Pb: $<N_{ch}> \pm \sigma = 241 \pm 43$
\(\nu_n \) scaling between the p+Pb and Pb+Pb systems.

- \(\nu_2 \) values, after scaling the \(p_T \) axis, differ only by a scale factor between the two systems.
- Suggests a similar origin for \(\nu_2 \) in the two systems?
Summary and Conclusions

- **Flow and fluctuations in Pb+Pb**
 - Consistent results from cumulant and EbE measurements.
 - Correlations of v_2 with higher order $v_n \rightarrow$ Event shape selection
 - Linear and non-linear components separated for v_4 and v_5

- **Ridge in p+Pb**
 - Non-zero near-side ridge and v_n at higher p_T (~10 GeV)
 - v_1 in p+Pb: changes sign around 1.5 GeV, reaches 0.1 for $p_T > 4$
 - Similar p_T dependence as v_n from peripheral Pb+Pb, after scaling the p_T axis for Pb+Pb by mean p_T:
 - Suggests a similar origin for v_2 in the two systems?